Thursday, August 8, 2019

Jesse DeLong - Gödel’s Incompleteness Theorems


Jess DeLong's work has appeared in Colorado Review, Mid-American Review, American Letters and Commentary, Indiana Review, Painted Bride Quarterly, and Typo, as well as the anthologies Best New Poets 2011 and Feast: Poetry and Recipes for a Full Seating at Dinner. My chapbooks, Tearings, and Other Poems and Earthwards, were released by Curly Head Press. 

***

Gödel’s Incompleteness Theorems, a Misunderstanding. x1 is an algorithm, a computer software; x2 is the mind.


1.

01010100 01101000 01100101 01110010 01100101 00100000 01101001 01110011 00100000 01101110 01101111 00100000 01110000 01101100 01100001 01100011 01100101

01101001 01101110 00100000 01110100 01101000 01100101 00100000 01100010 01110010 01100001 01101001 01101110 00100000 01110111 01100101 00100000 01100011 01100001 01101110 00100000 01110000 01101111 01101001 01101110 01110100 00100000 01110100 01101111

01100001 01101110 01100100 00100000 01110011 01100001 01111001 00100000 01110100 01101000 01100001 01110100

01010100 01101000 01100101 01110010 01100101

01101001 01110011 00100000 01100011 01101111 01101110 01110011 01100011 01101001 01101111 01110101 01110011 01101110 01100101 01110011 01110011 00101100

01101110 01101111 00100000 01000100 01110010 01101111 01110011 01110100 01100101

01100101 01100110 01100110 01100101 01100011 01110100 00100000 01101111 01100110 00100000 01110100 01101000 01100101 00100000 01000011 01100001 01110010 01110100 01100101 01110011 01101001 01100001 01101110

01010100 01101000 01100101 01100001 01110100 01110010 01100101 00101100 00100000 01110011 01101001 01110100 01110100 01101001 01101110 01100111 00100000 01110100 01101000 01100101 01110010 01100101

01101001 01101110 00100000 01101000 01101001 01110011 00100000 01101100 01101001 01110100 01110100 01101100 01100101 00100000

01100111 01110010 01100101 01100101 01101110 00100000 01110100 01110010 01101111 01110101 01110011 01100101 01110010 01110011 00101100

01100011 01110010 01110101 01101101 01100010 01110011 00100000 01101111 01101110 00100000 01101000 01101001 01110011

01100110 01101001 01101110 01100111 01100101 01110010 01110011 00101100

01101111 01100010 01110011 01100101 01110010 01110110 01101001 01101110 01100111



01101111 01110101 01110010 00100000 01101111 01100010 01110011 01100101 01110010 01110110 01100001 01110100 01101001 01101111 01101110 01110011 00101110 00100000 01010100 01101000 01100101 00100000 01101101 01101001 01101110 01100100 11100010 10000000 10011001 01110011

01100001 00100000 01100010 01100001 01100100 01101100 01111001 00101101 01100100 01110101 01100010 01100010 01100101 01100100 00100000 01100110 01101001 01101100 01101101

01100001 01100100 01100001 01110000 01110100 01100001 01110100 01101001 01101111 01101110 00100000 01101111 01100110 00100000 01110100 01101000 01100101 00100000 01100010 01101111 01101111 01101011 00101110 00100000 01001110 01101111 00100000 01000111 01101111 01100100

1100101 01101100 00100000 01110100 01101000 01100101 01101111 01110010 01100101 01101101 01110011 00101110 00100000 01001110 01101111

01100111 01101000 01101111 01110011 01110100 00101110 00100000 01001101 01100001 01111001 01100010 01100101

01100001 00100000 01101101 01100001 01100011 01101000 01101001 01101110 01100101 00101110 00100000 01001110 01101111 00101100

01100111 01101000 01101111 01110011 01110100 00101110


2.

x1 is excellent at achieving checkmate;
there is no practical algorithm for checkmate in chess;
therefore: the explanation of x1’s talents cannot be that x1 is running an algorithm.

x2 can understand;
there is no feasible algorithm for understanding;
therefore: the system that natural selection selected, the whatever-it-is that accounts for understanding,
(x2) cannot be an algorithm.